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Received 22 October 2001 / Received in final form 30 August 2002
Published online 29 November 2002 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2002

Abstract. Following the recently introduced concept of transfer entropy , we attempt to measure the in-
formation flow between two financial time series, the Dow Jones and DAX stock index. Being based on
Shannon entropies, this model-free approach in principle allows us to detect statistical dependencies of
all types, i.e. linear and nonlinear temporal correlations. However, when available data is limited and the
expected effect is rather small, a straightforward implementation suffers badly from misestimation due to
finite sample effects, making it basically impossible to assess the significance of the obtained values. We
therefore introduce a modified estimator, called effective transfer entropy, which leads to improved results
in such conditions. In the application, we then manage to confirm an information transfer on a time scale
of one minute between the two financial time series. The different economic impact of the two indices is
also recovered from the data. Numerical results are then interpreted on one hand as capability of one index
to explain future observations of the other, and on the other hand within terms of coupling strengths in
the framework of a bivariate autoregressive stochastic model. Evidence is given for a nonlinear character
of the coupling between Dow Jones and DAX.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 05.45.Tp Time series analysis –
89.90.+n Other topics in areas of applied and interdisciplinary physics

1 Introduction

Recently, Schreiber [1] introduced the information-
theoretic inspired concept of transfer entropy, aimed
at quantifying in a non-parametric and explicitly non-
symmetric way the flow of information between two time
series. Formally, this model-free approach allows to detect
statistical dependencies in a very general way; in partic-
ular it is not limited to linear statistics, but potentially
reveals all types of temporal correlations. However, due to
relatively high amounts of data required – and especially
when the expected effect is rather small – practical anal-
yses are complicated by finite sample effects that make it
difficult to assess the significance of obtained values. In the
present work, we will therefore propose a slightly modified
version of transfer entropy, to be called effective transfer
entropy (ETE), that leads to an improved estimation un-
der such conditions.

In order to illustrate the improved estimation by ETE
in a practical case, we will test it by measuring the infor-
mation flow between two historical financial time series,
the US-American Dow Jones Industrial Average and the
German DAX Xetra stock index. The numerical findings
will be interpreted in a unique way within the framework
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of an artificial model based on a bivariate autoregressive
stochastic process.

The motivation for such an analysis of financial data is
by no means limited to testing purposes, since it has a def-
inite value of its own. In fact, there has been a recent but
growing interest of physicists in the dynamics of financial
markets [2–7]. This might have been stimulated by the
discovery of some strong analogies between speculative
markets and some well known physical phenomena and
concepts, as for instance spin systems [8], turbulence [3],
universality [7], self-organised criticality [5,9], and com-
plexity [6], almost all of which can be associated with
the statistical mechanics branch of physics. With growing
recognition of this new field of interest the term econo-
physics was being coined.

Today, one can divide the research activities within
econophysics roughly in two areas: the “microscopic” ap-
proach investigates the financial market dynamics from
the point of view of the single agents, with the long-term
target of being able to reproduce the complex “macro-
scopic” behaviour of the financial markets starting from
microscopic equations [5,8]. To thoroughly analyse and
describe the statistical properties of that “macroscopic”
behaviour is exactly what constitutes the second branch
of econophysics [10–14]. This field of research profits from
the immense amount of electronically recorded financial
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data available; in that sense econophysics can also be con-
sidered a laboratory for methods of data analysis and, in
particular and as in our case, for time series analysis.

So far, few authors within the econophysics commu-
nity have studied the multivariate properties of financial
time series: some works [4,6,7], applying e.g. random ma-
trix theory, analyse the linear cross-correlations of stocks
composing an exchange index; one paper [15] explicitly
discusses cross-correlations between the Dow Jones and
Dax index1, but as do most such publications, it limits
itself to the use of linear statistics. Information-theoretic
tools, such as conditional entropies or mutual informa-
tion, were applied only in few cases to financial data as
for now [10,11,13].

2 Presentation of the data

The analysed dataset2 consists of 63 867 simultaneously
recorded data points of the Dow Jones (DJ) and DAX
stock exchange indices, sampled at a one-minute rate, dur-
ing the time between May 2000 and June 2001. Only com-
plete records, i.e. minutes with a valid value for both DAX
and DJ, were admitted: invalid values due to transmis-
sion errors or computer failures were carefully filtered out,
and periods without trading activity (weekends, night-
time, holidays) in one or both stock exchanges were ex-
cluded, reconnecting afterwards the remaining parts of the
original time series. This procedure has the obvious draw-
back that records notedly separated in real time may be-
come close neighbours in the newly defined time series,
but the relatively small number of such “critical” points
compared to the regular ones prevents a statistically sig-
nificant impact3. The overall run of both indices after the
preprocessing is displayed in Figure 1.

As is evident from Figure 1, the raw DJ or DAX series
cannot reasonably be assumed as stationary, a property
yet essential for the validity of the forthcoming analysis.
The standard solution to this problem is to define some
new variable that can be considered sufficiently stationary,
or at least asymptotically stationary [6]. The usual vari-
ables chosen by most authors to describe a financial time
series x(t), t = 1 . . .N are the price-change or increment,
δxτ (t) := x(t + τ) − x(t), return, rτ (t) := δxτ (t)/x(t), or
log-return, sτ (t) := ln [x(t + τ)] − ln[x(t)]. The choice of
the variable does not affect the outcome of the present
work; in fact, in the high-frequency regime they are ap-
proximately identical, or proportional to each other [6].
Following the majority of authors, we will adopt the log-
returns in our analysis. The usual quantity employed to
characterise the fluctuation in financial data is the so
called volatility, here defined as

vol∆(t) :=
1
∆

∆∑

i=1

|sτ (t + i)|, (1)

1 But only daily data was analysed.
2 Provided by Deutsche Bank Research.
3 In principle, the problem could be resolved by skipping

these time indices when calculating HI(m).
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Fig. 1. Dow Jones (upper curve) and DAX: overall run of
filtered time series.

where the parameter ∆ refers to the chosen length of the
time-window and τ (in our case always τ = 1 min) denotes
the basic time scale. The average values of the DJ and
DAX log-returns are 〈ŝ(t)DJ 〉t � 〈ŝ(t)DAX〉t � ±1×10−6,
while the absolute log-returns, also interpretable as an es-
timate of the one-minute volatility, have mean values of
〈v̂ol1min(t)DJ 〉t � 〈v̂ol1min(t)DAX〉t � 3×10−4. However,
as widely known, the strength of fluctuations in financial
data is subject to long-term correlated oscillations4. Still,
in concordance with other authors [6] we assume a suffi-
ciently long financial time series to be asymptotically sta-
tionary, i.e. leading to relevant results for the large time
statistical properties of the analysed data.

3 Definition of transfer entropy

Transfer entropy has been very recently introduced by
Schreiber [1]. Its foundations are to be found in the works
of Shannon [16] and Kolmogorov [17] on the theory of
information [18]. Let us consider a discrete and station-
ary signal I(t), with p(i) being the probability5 to observe
symbol i, i ∈ {1, 2, . . . , S}, and S denoting the number
of symbols in the alphabet. According to Shannon, the
average number of bits needed to optimally encode the
signal I without taking into account possible correlations
is given by

HI := −
S∑

i=1

p(i) log2 p(i), 0 ≤ HI ≤ log2 S, (2)

called Shannon entropy. By writing p(i1, i2, . . . , im) for the
probability of observing the subsequence (i1, i2, . . . , im),

4 Known as correlated volatility.
5 Time independent, since we assumed stationarity.
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one can generalise the Shannon entropy and define the
block-entropy of order m:

HI(m) := −
S∑

i1,...,im=1

p(i1, i2, . . . , im) log2 p(i1, i2, . . . , im).

(3)

The differences of block-entropies of neighbouring order
constitute the conditional entropies:

hI(m) := HI(m + 1) − HI(m), 0 ≤ hI(m) ≤ HI .
(4)

hI(m) expresses the average amount of information (in
bits) still transmitted by the latest observation I(m + 1)
when the last m observations of I are known and their in-
formation has been completely exploited; or, equivalently,
the missing information for a correct forecast of I(m + 1)
with the help of the m preceding historical observations.
By using equation (3) and some elementary algebra, one
can rewrite equation (4) as

hI(m) = −
∑

p(i1, . . . , im+1) log2 p(im+1|i1, . . . , im),
(5)

namely as Shannon entropy of the conditional probabili-
ties, here denoting by

p(im+1|i1, i2, . . . , im) = p(i1, . . . , im, im+1)/p(i1, . . . , im)
(6)

the probability to observe symbol (im+1) immediately af-
ter the sequence (i1, i2, . . . , im). This also explains the
name conditional entropy.

The limit limm→∞ hI(m) =: hI takes the name en-
tropy of the source and quantifies the average amount of
information needed to predict a future observation when
knowing the entire history of a series I. In case of a pe-
riodic signal one finds hI = 0, hI = HI for a purely
stochastic and 0 < hI < HI for a chaotic or corre-
lated signal [19]. In practice, probabilities are estimated
through relative frequencies, p(i1, . . . , im) = n(i1,... ,im)

N ,
where n(i1, . . . , im) is the number of occurrences of the
sequence (i1, . . . , im) inside the data set, and N is the
length of the time series. The limit m → ∞ then is of
course impossible to achieve, and therefore one must look
for the asymptotic behaviour of hI(m), hoping to find
a sufficiently large region with values independent of m
(called plateau), before hI(m) gets substantially under-
estimated and eventually converges to zero due to finite
sample effects.

Transfer entropy (TE) is closely related to conditional
entropy, but it extends to two series, I(t) and J(t). The
concept is the following:

Transfer Entropy =
+ information about future observation I(t + 1)

gained from past joint observations of I and J
− information about future observation I(t + 1)

gained from past observations of I only
= information flow from J to I.

This definition already reflects the key advantage of
transfer entropy over other cross-correlation statistics: it
is an asymmetric measure, that takes into account only
statistical dependencies truly originating in the “source”
series J , but not those deriving from a common history,
like in the case of a common external drive for instance.
Expressing the above relationship with the conditional en-
tropies hm and using equation (5) leads to

TJ→I(m, l) : = hI(m) − hIJ(m, l) (7)

=
∑

p(i1, . . . , im+1, j1, . . . , jl)

× log2

p(im+1|i1, . . . , im, j1, . . . , jl)
p(im+1|i1, . . . , im)

, (8)

where the parameters m and l indicate the block-lengths
(=number of included past observations) in the I and J
series, respectively. The sum must be taken over all pos-
sible states i, j ∈ {1, . . . , S}.

It would generally be desirable to choose the param-
eter m as large as possible in order to find an invariant
value defined as in the case of the conditional entropies
for m → ∞, but in practice the finite size of any real
dataset imposes the need to find a reasonable compro-
mise between unwanted finite sample effects (the amount
of data required grows like S(m+l)) and a higher closeness
to the limit. A potential pitfall consists in choosing the
parameter m too small, in which case information con-
tained in past observations of actually both series may be
misinterpreted as an information flow from series J to I.
In a conservative approach it would thus be advisable to
choose m as large as possible and set l = 1, which we
will do in all forthcoming analyses. From equations (8)
and (4) one deduces for the range of transfer entropy:
0 ≤ TJ→I(m, l) ≤ HI .

4 Empirical results

4.1 Partitioning the data

The first step in any analysis of real data with tools based
on symbolic dynamics like transfer entropy is to discretise
the data by some coarse graining. Although the financial
data is actually already in a discrete form, its resolution
is by far too high with respect to the amount of records
available. For more robust statistics and especially in the
case of multi-fractal phenomena it is often recommendable
to work with coverings and use generalised Renyi entropies
instead of partitions and Shannon entropies [19].

In the present case, however, a straightforward im-
plementation defining a partition with marginal equal-
probability for every symbol will lead to sensible results.
Such a partition is generated by dividing the range of the
given dataset into S (size of the alphabet) disjoint inter-
vals, such that the number of data points in every interval
is constant and therefore p(i) = 1/S and consequently
HI = −∑S

i=1 p(i) log2 p(i) = −S 1
S log2

1
S = log2 S both

automatically hold for every encoded series I, where ev-
ery data point has now been uniquely replaced by the
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Fig. 2. Transfer entropy measuring the information flow from
Dow Jones to DAX series, using various partitions of S = 2,
3, 4, 5 symbols (bottom to top). Upper lines have been cal-
culated on the log-returns of DJ and DAX, for the lower ones
(triangles) the log-returns of the DJ series have previously been
shuffled.

label of its proper interval. Apart from its simpleness,
this approach has the advantage of neutralising undesir-
able effects due to very inhomogeneous histograms, and it
also ignores the trivial information gain obtained by just
observing marginal distributions. Furthermore, for data
with an approximately symmetric distribution the con-
crete meaning of partitions consisting of few symbols is
quite intuitive: two symbols (S = 2) only take the sign
of the increments into account, three correspond to the
three possible moves (i) larger gain, (ii) roughly neutral,
(iii) larger loss etc. Transfer entropy will of course depend
on the specific partition chosen; however, by varying the
partitions one tries to find approximately invariant results.

4.2 Effective transfer entropy

In Figure 2 are displayed for four different partitions first
results for the information transport from the DJ to the
DAX series6. The steady rise of the observed transfer en-
tropy with increasing block length m is not compatible
with the theoretical expectations, and therefore no infor-
mation flow can be attributed to these “raw” findings.
In order to investigate their significance we now confront
the obtained set of curves with a second set, calculated
in exactly the same way as the first, except that the data
points of the second series, that represents the source of
the presumed information flow, have been shuffled, a tech-
nique related to the concept of surrogate data. With such
a preprocessing, all potential correlations between the two

6 As mentioned before, the parameter l, referring to the
block-length in the J series (here DJ) has been fixed at l = 1.
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Fig. 3. Effective transfer entropy measuring the information
flow between Dow Jones and DAX series, and vice versa, using
four different partitions of S = 2, 3, 4, 5 symbols (bottom to
top).

series I and J are destroyed, and hence the observed trans-
fer entropy should be zero, but as can be noted in Figure 2,
also the new curves calculated with the shuffled DJ log-
returns rise monotonically and have similar values as their
original counterparts. Since there is no structure in the
data, the observed non-zero values must be an artefact of
the finite sample size, which also naturally accounts for
the unexpected increase of the transfer entropy for grow-
ing block lengths m.

Consequently, in order for transfer entropy to objec-
tively confirm an information flow, the empirical curves
need to be above the ones generated by the shuffled data,
which can be interpreted as significance threshold. At this
point it is convenient to introduce a new and so far only
heuristically motivated variable that facilitates the inter-
pretation of the results: we define effective transfer entropy
(ETE) as the difference of the usual transfer entropy cal-
culated for the empirical series and the transfer entropy
calculated for the same series, but with the J series shuf-
fled:

ETJ→I(m, l) := TJ→I(m, l) − TJshuffled→I(m, l). (9)

In Section 5 we will demonstrate the usefulness and formal
consistency of effective transfer entropy, thereby justifying
a posteriori its application in the following. However, the
misestimation of Shannon entropies due to finite sample
effects is a well known phenomenon, see, e.g. [20,21].

In Figure 3 we show results for the effective transfer
entropy in the case Dow Jones and DAX, considering both
directions. From the now much clearer overall picture the
following conclusions can be deduced:
– A flow of information from minute t of one series to

the following minute of the other series is confirmed
for both directions, thereby suggesting interactions be-
tween the two financial markets at a time scale of one
minute or less.

– The two series do not have the same relative “weight”,
i.e. more information is transfered from the DJ to the



R. Marschinski and H. Kantz: Analysing the information flow between financial time series 279

1 2 3 4
Block length m in series I [min]

0

0.003

0.006

0.009

0.012

0.015

R
el
at
iv
e 
ex
pl
an
at
io
n 
ad
de
d

REA DJ  > DAX (log  returns)
REA DAX  > DJ (log  returns)

Fig. 4. Relative explanation added by the current value of the
DJ for next minute’s value of the DAX and vice versa, for four
partitions of S = 2, 3, 4, 5 and S = 2, 5, 3, 4 symbols (bottom
to top along y-axis at m = 1).

DAX than vice versa, which may seem trivial as a
purely economical fact, but actually confirms in an
independent way the validity of the transfer entropy
formalism.

– The severeness of finite sample effects (how fast do
the curves drop to zero for growing block-lengths m)
highly depends on the size S of the alphabet. It be-
comes clear that the use of more than a few symbols
is not compatible with the amount of data at disposal.

These conclusions have been drawn by interpreting Fig-
ure 3 qualitatively, but what about the meaning of the
actual numbers? In the following we will suggest two pos-
sible interpretations.

4.3 Relative explanation added

The first and rather naive approach consists in relating
the measured amount of information flow from J to I
to the total flow of information in I, or, in other words,
in asking of how much of I(t) is additionally explained,
when we already know the past of series I and then take
into account the last observation of J , J(t−1). Expressing
this relative explanation added (REA) formally:

REA(m, l) :=
ETJ→I(m, l)

hI(m)
, (10)

for which we report quantitative results in Figure 4 7.
Here, the finite sample effects on hI(m) are sufficiently
small to be ignored. As can be noted, all curves are very
robust against changes of m, the memory of the data set
I. It shows that the information gained from the second
time series cannot be compensated by taking into account
a longer memory of the time series to be predicted. As a

7 It should be pointed out that the total explanatory power
of J(t − 1) with respect to I(t), i.e. when shared information
with past observations of I is not excluded, might be much
higher.

Table 1. Averaged relative explanation added: how much
(here in percent) of I(t) can be explained only by J(t − 1)?

Symbols S REA DJ → DAX [%] REA DAX → DJ [%]

2 1.16 ± 0.04 0.23 ± 0.01
3 1.32 ± 0.03 0.40 ± 0.01
4 1.30 ± 0.09 0.49 ± 0.02
5 1.21 ± 0.09 0.54 ± 0.05

summary of the figure, we report the averaged values of
the relative explanation added in Table 1, where the errors
represent the standard deviations.

It is interesting to note the rather large gap in the val-
ues of Table 1 between S = 2 and S = 3: For the case Dow
Jones → DAX all values for partitions finer than the bipar-
tion are compatible within standard deviation. Also in the
second case we observe a gap between the value found for
the bipartition and all others. Since the bipartition chosen
by us has the special characteristic that it can only rep-
resent a linear statistical dependence, the observed jump
in the information flow when going to higher resolutions
possibly implies a nonlinear correlation between the two
series.

4.4 Comparison with linear autoregressive process

In a second approach aimed to interpret the quantitative
results found in Section 4.2 we will propose a model that
in a simplified way mimics the behaviour of the two fi-
nancial time series and yet admits a clear identification
of what concrete numerical values of the transfer entropy
mean. Since we are investigating multivariate properties,
we assume the single series to be well represented by un-
correlated Gaussian noise (r, s) with zero mean and unit
standard deviation8. For simplicity we will consider a lin-
ear autoregressive coupling only in one direction of the
following form:

x(t) := r(t) + εy(t − 1) and y(t) := s(t). (11)

The parameter ε regulates the strength of the coupling
and, once the number of symbols S for the partition has
been fixed, also in a unique way the information flow from
y(t) to x(t). In fact, for every set of parameters (S, ε) the
corresponding transfer entropy can be calculated by nu-
merically evaluating Gaussian integrals over appropriate
regions in the real plane. Results of that calculation to-
gether with the corresponding values of the DJ/DAX case
taken from Figure 3 (m=1) are shown in Figure 5. Two
important implications follow:

– The apparently low values found for the information
flow as reported in Figure 3 correspond to surprisingly
strong couplings of ε � 0.1 (DAX→DJ) and ε � 0.2
(DJ→DAX). Let us note that in the case of a bi-
nary encoding ε = 0.2 implies a correct forecast rate
of 56,5%.

8 The standard deviation actually has no influence in the
case of linear coupling.
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Fig. 5. Analytically derived transfer entropy as function of
the coupling strength for the information flow from y(t) to
x(t) as defined in equation (11), for S = 2, 3, 4, 5 symbols
(from below). Indicated are also the intersections with the cor-
responding values for the DJ/DAX case taken from Figure 3.

– The steady increase – in all except one case – of the
associated coupling parameter ε for finer partitions
strongly indicates a nonlinear coupling between the
two financial series: if our linear model had been a
faithful representation of the real coupling between
DJ/DAX, we should have seen a clustering of the em-
pirical ε values around one “correct” value. Instead
we observe that the realized flow of information grows
faster for finer partitions than it should be in the case
of a linear coupling, meaning that the finer partitions
allow to reveal some additional coupling.

5 Validity of effective transfer entropy
estimates

5.1 Properties of the estimator

We now want to justify the previous use of effective trans-
fer entropy by providing evidence for its formal consis-
tency and improved ability to cope with finite sample ef-
fects. From its definition equation (9) one verifies immedi-
ately the correct asymptotic behaviour when the sample
size N approaches infinity: N → ∞ ⇒ TJshuffled→I(m, l) →
0 by the definition of transfer entropy, which is thus re-
trieved.

For illustrating the improved estimation in presence
of finite sample effects we will make use of the stochastic
model defined earlier in equation (11). By reducing suc-
cessively the length N of a time series that was generated
according to the model, the response to finite sample ef-
fects of both effective and the usual transfer entropy can
be simulated in a generic and – since we know the correct
value from calculations – controllable way.

As can be seen from the results of that test, displayed
for a typical parameter configuration in Figure 6, the effec-

Fig. 6. Comparison of the behaviour of transfer entropy and
effective transfer entropy for a varying sample size N : the in-
formation flow y(t) to x(t) (Eq. (11), with ε = 0.15, S = 3
and m = 4) was measured for ten different realizations of the
process, then average and standard deviation were calculated.

tive transfer entropy indeed approaches the correct value
notably faster than the usual transfer entropy estimator;
moreover, though it suffers from higher fluctuations due to
the summation of two random terms, it also has a smaller
bias at all considered sample lengths. Returning to the
main point of this section, we can conclude that the pre-
ferred application of effective transfer entropy turned out
to be well justified.

5.2 Numerical and systematic errors

In the discussion of possible sources of errors, there are
two aspects we retain important. The first one, concern-
ing the stationarity of the data, constitutes a critical issue
not only for this work, but for the whole data analysis re-
lated branch of econophysics. That financial data cannot
be considered strictly stationary is widely accepted, but
few attempts9 have been made in order to develop statisti-
cal methods taking that into account appropriately. With
reference to our case this means that we cannot assume
total time independence for the single p(i) and conditional
p(i|j) probabilities, and, in fact, in a moving window anal-
ysis fluctuations became apparent in the information flow
between Dow Jones and DAX. This somewhat weakens the
numerical results presented here, but the qualitative re-
sults, i.e. the existence of the information flow, should not
be affected. Actually, the non-stationarity must not nec-
essarily be disadvantageous, but instead could be used to
identify periods of stronger and weaker coupling between
the indices – of course only for large enough datasets.

Since the measurement errors in the electronically else-
where recorded data cannot be assessed here, the remain-
ing cause of errors in our work is given by the statistical

9 The DFA (detrended fluctuation analysis [22]) represents
one of them.
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fluctuations in the performed calculations and estimates.
An idea of the typical statistical error of effective trans-
fer entropy can be read off from Figure 6. For the sample
length N analysed here (� 6 × 105) the error is rather
small, and is judged to be negligible in comparison to the
larger fluctuations induced by the weak stationarity of the
data.

6 Conclusion

Summary

In this paper, a new estimator for Schreiber’s transfer en-
tropy, called effective transfer entropy, was presented. By
means of a significance threshold, this new estimator takes
finite sample effects explicitly into account, which lead to
greatly improved numerical results in the case of an empir-
ical analysis of financial time series. In fact, profiting from
the model-free approach of transfer entropy, we were able
to investigate the coupling between two financial time se-
ries, namely the Dow Jones and DAX stock index. First, a
significant information transfer between them could be de-
tected, which suggests possible interactions between these
financial markets at time scales of less than one minute.
This result is surprising, since it suggests that a certain
number of agents is trading on both markets simultane-
ously. However, since we are discussing the log-returns and
hence the fluctuations of the stock indices, one cannot ex-
pect any information flow on larger time horizons. As a
second result, the well known higher relative impact of the
US-index on the German DAX has been retrieved from the
data, thereby confirming the applied method.

In order to understand the numerical results, which
carry the rather abstract dimension of bits, in a more in-
tuitive way, we defined two possible interpretive instru-
ments: first relative explanation added, which expresses the
percentage of information contained in future observation
I(t + 1) that can be explained only by observation J(t).
Here we found values slightly above one percent for what
the Dow Jones explains of the DAX, and about half per-
cent for the opposite case, again in qualitative accordance
with generally known facts.

The second interpretation could be given within the
context of a simple two-dimensional autoregressive pro-
cess with a one-parameter adjustable linear coupling, for
which the transfer entropy could be derived analytically.
The following identification of the empirically observed
amount of information flow with the coupling strength
parameter of the model indicated a surprisingly strong
coupling between the two stock indices. In addition, the
observed monotonous increase of the associated coupling
strengths for partitions with higher resolution showed the
incompatibility of the model with the real process, imply-
ing thus nonlinearity for the coupling between Dow Jones
and DAX.

Perspectives

Apart from developing forecast algorithms that exploit the
identified redundancies, a possible next step following the
presented work could be to set up other bivariate mod-
els with more realistic couplings and then test them by
comparing their transfer entropy behaviour with the em-
pirically observed one. A further interesting perspective
consists in measuring information flows between several
financial time series, e.g. various FX-series, thereby de-
riving a currency taxonomy and a hierarchy of relative
“weights”.

We would like to thank Deutsche Bank Research and in par-
ticular C. Kreuter for having provided the financial data.
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